

B4BQDD8CXXXC-XX0

400GbE QSFP-DD Active Optical Cable (AOC)

Description

B4BQDD8CXXXC-XX0 is 400Gb/s QSFP-DD active optical cable (AOC). It is compliant with the QSFP-DD MSA Rev5.0 and IEEE 802.3bs, and Common Management Interface Specification Rev4.0. 400G AOC is an assembly of eight full-duplex lanes, where each lane is capable of transmitting data at rates up to 53.125Gb/s PAM-4.

Features

- Data rate up to 425Gbps (8x PAM4 26.5625 GBd)
- High speed I/O electrical interface (400GAUI-8)
- I2C interface with integrated Digital **Diagnostic monitoring**
- 850nm VCSEL laser and PIN receiver
- QSFP-DD MSA compliant
- Single +3.3V power supply
- Power consumption (Each end) <8 W
- Operating case temperature 0 to 70 °C
- CMIS 4.0 management interface

Applications

- Data Center
- Switch/Router interconnections

1/28Rev. 1.1

1 FUNCTIONAL DESCRIPTION

B4BQDD8CXXXC-XX0 is 400Gb/s QSFP-DD active optical cable (AOC). It is compliant with the QSFP-DD MSA Rev5.0 and IEEE 802.3bs, and Common Management Interface Specification Rev4.0. 400G AOC is an assembly of eight full-duplex lanes, where each lane is capable of transmitting data at rates up to 53.125Gb/s PAM-4.

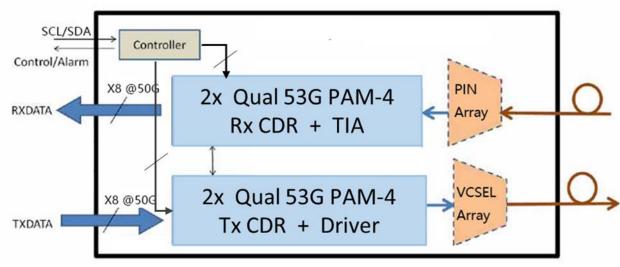


Figure 1 Functional Block Diagram

PERFORMANCE SPECIFICATIONS 2

2.1 **Absolute Maximum Ratings**

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings will cause permanent damage and/or adversely affect device reliability.

Table 1 Absolute Maximum Ratings

No.	Parameter	Symbol	Min.	Max.	Unit	Remarks
1	Supply Voltage	Vcc	0	+3.6	V	
2	Storage Temperature		-40	85	°C	
3	Operating Relative Humidity	RH	15	85	%	

2.2 **Operating Environments**

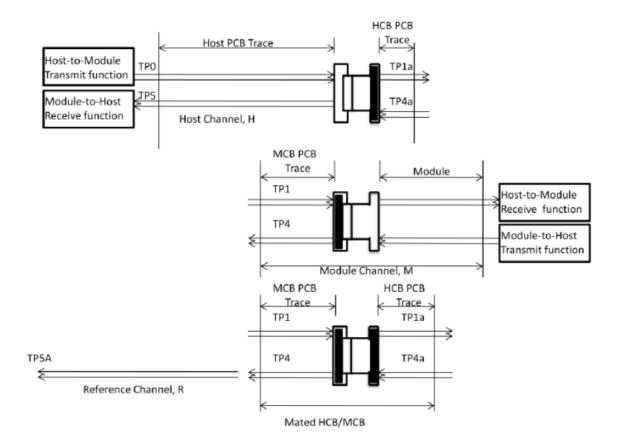
Electrical and optical characteristics below are defined under this operating environment, unless otherwise specified.

Table 2 Operating Environment

No	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
1	Supply Voltage	Vcc	3.135	3.3	3.465	V	
2	Supply Voltage Noise Tolerance	PSNR	-	-	66	mV	10 Hz –10 MHz
3	Power Consumption	P_4	-	-	8	W	Each end
4	Instantaneous peak current	lcc_ip_4			3200	mA	
5	Sustained peak current	lcc-sp_4			2640	mA	
6	Supply Current	Icc-4		-	2551.8	mA	Steady state
7	Case Temperature	Tc	0	25	70	°C	
8	Lane Bit Rate	BR _{LANE}		53.125		Gb/s	
9	Signaling Speed Accuracy	SSA	-100		100	Ppm	
10	BER				2.4E-4		Pre-FEC

2.3 Electrical Interface

Table 3 Electrical Characteristics


No.	Parameter	Min.	Тур.	Max.	Unit	Remarks
	Module output (ea	ch lane, at T	P4) [Note 1]		
1	Signaling rate per lane (range)	-100ppm	26.5625	+100ppm	GBd	
2	AC Common-mode output voltage (RMS)	-	-	17.5	mV	
3	Differential peak-to-peak output voltage	-	-	900	mV	
4	Near-end ESMW (Eye symmetry mask width)	0.265	-	-	UI	
5	Near-end Eye height, differential	70			mV	
6	Far-end ESMW (Eye symmetry mask width)	0.2	-	-	UI	
7	Far-end Eye height, differential	30	-	-	mV	
8	Far-end pre-cursor ISI ratio	-4.5	-	2.5	%	
9	Differential output return loss	Equation (83E-2)	-	-	dB	Note 2
10	Common to differential mode conversion return loss	Equation (83E-3)	-	-	dB	Note 2
11	Differential termination mismatch	-	-	10	%	
12	Transition time (20% to 80%)	9.5	-	-	ps	
13	DC common mode voltage	-350	-	2850	mV	
	Module i	nput (each la	ne)			
1	Signaling rate per lane (range)	-100ppm	26.5625	+100ppm	GBd	
2	Differential pk-pk input voltage tolerance	900	-	-	mV	at TP1a
3	Differential input return loss	Equation (83E-5)	-	-	dB	at TP1, Note 2
4	Differential to common mode input return loss	Equation (83E-6)	-	-	dB	at TP1, Note 2
5	Differential termination mismatch	-	-	10	%	at TP1
6	ESMW (Eye symmetry mask width)	0.22	-	-	UI	at TP1a
7	Eye width	0.22	-	-	UI	at TP1a
8	Applied pk-pk sinusoidal jitter		Table 120E	-6	MHz, UI	at TP1a
9	Eye height	32	-	-	mV	at TP1a

10	Single-ended input voltage tolerance range	-0.4	-	3.3	V	at TP1a
11	DC common mode voltage	-350	-	2850	mV	at TP1

Note 1: Electrical module output is squelched for loss of optical input signal.

Note2: IEEE Std 802.3-2018 Section 6

Figure 2 Reference Test Points

3 **HIGH SPEED DATA INTERFACE**

3.1 Rx(n)(p/n)

Rx(n)(p/n) are QSFP-DD module receiver data outputs. Rx(n)(p/n) are AC-coupled 100 Ohm differential lines that should be terminated with 100 Ohm differentially at the Host ASIC. The QSFP-DD module host interface is internally AC coupled, so AC-coupling is not required on the host PCB.

Output squelch for loss of optical input signal (RX Squelch) is required and shall function as follows. In the event of the Rx input signal on any optical port becoming equal to or less than the level required to assert LOS, the receiver output(s) associated with that Rx port shall be squelched. A single Rx optical port can be associated with more than one Rx output. In the squelched state, output impedance levels are maintained, while the differential voltage amplitude shall be less than 50 mVpp.

3.2 Tx(n)(p/n)

Tx(n)(p/n) are QSFP-DD module transmitter data inputs. They are AC-coupled 100 Ohm differential lines with 100 Ohm differential terminations inside the QSFP-DD optical module. The AC coupling is implemented inside the QSFP-DD optical module and not required on the Host board.

Output squelch for loss of electrical signal (Tx Squelch) is an optional function. Where implemented, it shall function as follows. In the event of the differential, peak-to-peak electrical signal amplitude on any electrical input channel becoming less than 70 mVpp, then the transmitter optical output associated with that electrical input channel shall be squelched and the associated TxLOS flag set. If multiple electrical input channels are associated with the same optical output channel, the loss of any of the incoming electrical input channels causes the optical output channel to be squelched.

For applications, e.g. Ethernet, where the transmitter off condition is defined in terms of average power, squelching by disabling the transmitter is recommended and for applications, e.g. InfiniBand, where the transmitter off condition is defined in terms of OMA, squelching the transmitter by setting the OMA to a low level is recommended.

CONTROL INTERFACE 4

4.1 Low Speed Control Pins

In addition to the 2-wire serial interface the transceiver has the following low speed signals for control and status: LPMode, ResetL, ModSel, IntL and ModPrsL. See the QSFP-DD MSA Hardware Specification for detailed descriptions of each signal.

4.2 Low Speed Electrical Specifications

Low speed signaling other than SCL and SDA is based on Low Voltage TTL (LVTTL) operating at Vcc.

Parameter	Symbol	Min	Max	Unit	Condition
SCL and SDA	VOL	0	0.4	V	IOL (max)=3 mA for fast mode, 20
					mA for Fast-mode plus
SCL and SDA	VIL	-0.3	Vcc*0.3	V	
	VIH	Vcc*0.7	Vcc+0.5	V	
Capacitance for	Ci		14	pF	
SCL and SDA I/O					
signal					
Total bus capacitive	Cb		100	pF	For 400 kHz clock rate use 3 kohm
load for SCL and					pullup resistor, max. For 1000 kHz
SDA					clock rate refer to Figure 6 in
					QSFPDD MSA HW Spec [3].
	Cb		200	pF	For 400 kHz clock rate use 1.6 kohm
					pullup resistor, max. For 1000 kHz
					clock rate refer to Figure 6 in
					QSFPDD MSA HW Spec [3].
LPMode, ResetL	VIL	-0.3	0.8	V	
and ModSelL	VIH	2	Vcc+0.3	V	
	lin		360	uA	0V <vin<vcc< td=""></vin<vcc<>
IntL	VOL	0	0.4	V	IOL=2.0 mA
	VOH	Vcc-0.5	Vcc+0.3	V	10 kohm pull-up to Host Vcc
ModPrsL	VOL	0	0.4	V	IOL= 2.0mA

Table 4 Low Speed Control and Sense Signals

7/28 Rev. 1.1

850nm Multi-mode AOC **QSFP-DD** form factor with Diagnostic Monitoring A PAC Opto 400GBASE QSFP-DD AOC

VOH	Vcc-0.5	Vcc+0.3	V	ModPrsL can be implemented as a
				short-circuit to GND on the module

4.3 2-Wire Management Interface

A management interface, as already commonly used in other form factors like QSFP, SFP, and CDFP, is specified in order to enable flexible use of the module by the user. This QSFP-DD specification is based on SFF-8636 but with modifications to support an 8-channel module, and as such is not directly backwards compatible with SFF-8636. Byte 00 on the Lower Page or Address 128 Page 00 is used to indicate the use of the QSFP-DD memory map rather than the QSFP memory map.

The QSFP-DD Module supports alarm, control and monitor functions via a two-wire interface bus. Upon module initialization, these functions are available. QSFP-DD two-wire electrical interface consists of 2 pins of SCL (2-wire serial interface clock) and SDA (2-wire serial interface data). The low speed signaling is based on Low Voltage CMOS (LVCMOS) operating at Vcc. Hosts shall use a pull-up resistor connected to Vcc_host on the 2-wire interface SCL (clock) and SDA (Data) signals. The timing requirements on the two-wire interface are listed in Table 7 and Figure 4.

Parameter	Symbol	Fast Mode Plus (1 MHz)						Unit	Conditions
		Min	Max						
Clock Frequency	fSCL	0	1000	kHz					
Clock Pulse Width Low	tLOW	0.50		μs					
Clock Pulse Width High	tHIGH	0.26		μs					
Time bus free before new	tBUF	1		μs	Between STOP and START and				
transmission can start					between ACK and ReStart				
START Hold Time	tHD.STA	0.26		μs	The delay required between SDA				
					becoming low and SCL starting to				
					go low in a START				
START Setup Time	tSU.STA	0.26		μs	The delay required between SCL				
					becoming high and SDA starting				
					to go low in a START				
Data In Hold Time	tHD.DAT	0		μs					
Data In Setup Time	tSU.DAT	0.1		μs					
Input Rise Time	tR		120	ns	From (VIL,MAX=0.3*Vcc) to (VIH,				
					MIN=0.7*Vcc), see Figure 6 in				
					QSFPDD MSA HW Spec [3].				

Table 5 Management Interface Timing

		Fast Mode Plus			
Parameter	Symbol	(1 MHz)		Unit	Conditions
		Min	Max		
Input Fall Time	tF		120	ns	From (VIH,MIN=0.7*Vcc) to
					(VIL,MAX=0.3*Vcc), in QSFPDD
					MSA HW Spec [3]
STOP Setup Time	tSU.STO	0.26		μs	
STOP Hold Time	tHD.STO	0.26		us	
Aborted sequence bus	Deselect		2	ms	Delay from a host de-asserting
release	_Abort				ModSelL (at any point in a bus
					sequence) to the QSFP-DD
					module releasing SCL and SDA
ModSelL Setup Time ¹	tSU.ModSelL	2		ms	ModSelL Setup Time is the setup
					time on the select line before the
					start of a host initiated serial bus
					sequence. (Target)
ModSelL Hold Time ¹	tHD.ModSelL	2		ms	ModSelL Hold Time is the delay
					from completion of a serial bus
					sequence to changes of module
					select status. (Target)
Serial Interface Clock	T_clock_hold		500	us	Time the QSFP-DD module may
Holdoff "Clock Stretching"					hold the SCL line low before
					continuing with a read or write
					operation.
Complete Single or	tWR		80	ms	Time to complete a Single or
Sequential Write to non-					Sequential Write to non-volatile
volatile registers					registers.
Accept a single or	tNACK		10	ms	Time to complete a Single or
sequential write to					Sequential Write to volatile
volatile memory.					registers.
Time to complete a	tBPC		10	ms	Time to complete a memory bank
memory bank/page					and/or page change.
Endurance (Write Cycles)		50k		cycles	Module Case Temperature= 70 °C
					(Target)

Note 1: When the host has determined that module is QSFP-DD, the management registers can be read to determine alternate supported ModSelL set up and hold times.

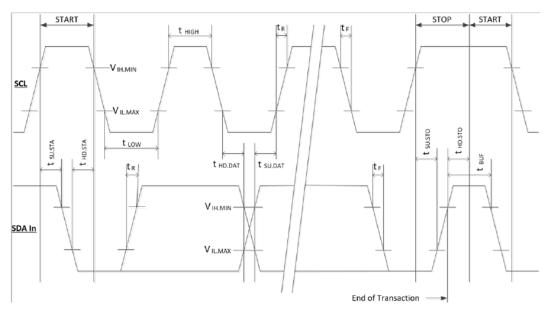


Figure 3 2-Wire Interface Timing Diagram

Soft Control and Status Functions 4.4

Table 8 lists the required timing performance for software control and status functions.

Parameter	Symbol	Min	Max	Unit	Conditions
MgmtInitDuration	Max MgmtInit		2000	ms	Time from power on ¹ , hot plug or
	Duration				rising edge of reset until until the high
					to low SDA transition of the Start
					condition for the first acknowledged
					TWI transaction.
ResetL Assert Time	t_reset_init	10		μs	Minimum pulse time on the ResetL
					signal to initiate a module reset.
IntL Assert Time	ton_IntL		200	ms	Time from occurrence of condition
					triggering IntL until Vout:IntL=Vol.
IntL Deassert Time	toff_IntL		500	μs	Time from clear on read ² operation of
					associated flag until Vout:IntL=Voh.
					This includes deassert times for Rx
					LOS, Tx Fault and other flag bits.
Rx LOS Assert	ton_los		100	ms	Time from Rx LOS condition present
Time					to Rx LOS bit set (value = 1b) and
					IntL asserted.
Tx Fault Assert	ton_Txfault		200	ms	Time from Tx Fault state to Tx Fault
Time					bit set (value=1b) and IntL asserted.
Flag Assert Time	ton_flag		200	ms	Time from occurrence of condition
					triggering flag to associated flag bit
					set (value=1b) and IntL asserted.
Mask Assert Time	ton_mask		100	ms	Time from mask bit set (value=1b) ³
					until associated IntL assertion is
					inhibited.

Table 6	Control and	Status	Timina	Rea	uirements
	oond or and	oluluo		1104	

Note 1: Power on is defined as the instant when supply voltages reach and remain at or above the minimum level specified in Table 2.

100

ms

Note 2: Measured from the rising edge of SDA in the stop bit of the read transaction.

toff_mask

Time from mask bit cleared

operation resumes.

(value=0b)³ until associated IntL

Time

Mask Deassert

Note 3: Measured from the rising edge of SDA in the stop bit of the write transaction. Note 4: Rx LOS condition is defined at the optical input by the relevant standard.

Squelch and Disable Assert/De-assert and Enable/Disable Timing 4.5

Table 7 I/O Timing for Squelch & Disable

Parameter	Symbol	Max	Unit	Conditions
Rx Squelch Assert	ton_Rxsq	15	ms	Time from loss of Rx input signal until the
Time				squelched output condition is reached.
Tx Squelch Assert	ton_Txsq	400	ms	Time from loss of Tx input signal until the
Time				squelched output condition is reached,
Tx Squelch De-	toff_Txsq	5	S	Tx squelch deassert is system and
assert Time		(Tentative)		implementation dependent.
Tx Disable Assert	ton_txdis	100	ms	Time from the stop condition of the Tx
Time				Disable write sequence1 until optical output
				falls below 10% of nominal.
Tx Disable Assert	ton_txdisf	Not applicab	le (Optional	Time from Tx Disable bit set (value = $1b$) ¹
Time (optional fast		fast mode no	t supported)	until optical output falls below 10% of
mode)				nominal and see notes 2 and 3.
Tx Disable De-	toff_txdis	400	ms	Time from Tx Disable bit cleared (value =
assert Time				0b) ¹ until optical output rises above 90% of
				nominal and see note 2.
Tx Disable De-	toff_txdisf	Not applicab	le (Optional	Time from Tx Disable bit cleared (value =
assert Time		fast mode no	t supported)	0b) ¹ until optical output rises above 90% of
(optional fast mode)				nominal, see note 3.
Rx Output Disable	ton_rxdis	100	ms	Time from Rx Output Disable bit set (value
Assert Time				= 1b) ¹ until Rx output falls below 10% of
				nominal
Rx Output Disable	toff_rxdis	100	ms	Time from Rx Output Disable bit cleared
De-assert Time				(value = 0b) ¹ until Rx output rises above
				90% of nominal.
Squelch Disable	ton_sqdis	Not applicabl	le (Tx/Rx	This applies to Rx and Tx Squelch and is
Assert Time		Auto Squelch	Disable not	the time from bit set $(value = 0b)^1$ until
		supported)		squelch functionality is disabled.
Squelch Disable	toff_sqdis	Not applicabl	le (Tx/Rx	This applies to Rx and Tx Squelch and is
De-assert Time		Auto Squelch	Disable not	the time from bit cleared (value = $0b)^1$ until
		supported)		squelch functionality is enabled.

Note 1: Measured from LOW to HIGH SDA signal transition of the STOP condition of the write transaction.

Note 2. CMIS 4.0 and beyond the listed values are superseded by the advertised

DataPathTxTurnOff_MaxDuration and DataPathTxTurnOn_MaxDuration times in P01h.168.

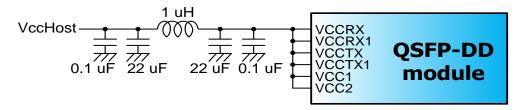
Note 3. Listed values place a limit on the DataPathTxTurnOff_MaxDuration and DataPathTxTurnOn_MaxDuration times (P01h.168) that can be advertised by such modules (for CMIS 4.0 and beyond).

5 POWER

The power supply has six designated pins, VccTx, VccTx1, Vcc1, Vcc2, VccRx, VccRx1 in the connector. Vcc1 and Vcc2 are used to supplement VccTx, VccTx1, VccRx or VccRx1 at the discretion of the module vendor. Power is applied concurrently to these pins.

A host board together with the QSFP-DD module(s) forms an integrated power system. The host supplies stable power to the module. The module limits electrical noise coupled back into the host system and limits inrush charge/current during hot plug insertion.

All power supply requirements in Table 2 shall be met at the maximum power supply current. No power sequencing of the power supply is required of the host system since the module sequences the contacts in the order of ground, supply and signals during insertion.


QSFP56-DD modules are categorized into several power classes as listed in Table 10. The power class of AD2H00ENA is class 04.

Power Class	Max Power (W)
1	1.5
2	3.5
3	7.0
4	8.0
5	10
6	12
7	14
8	>14

Table 8 Maximum Power Classes

5.1 Host Board Power Supply Filtering

The host board should use the power supply filtering equivalent to that shown in Figure 5.

Figure 4 Recommended Host Board Power Supply Filtering

Module Power Supply Specification

In order to avoid exceeding the host system power capacity, upon hot-plug, power cycle or reset, all QSFP-DD modules shall power up in Low Power Mode if LPMode is asserted. If LPMode is not asserted, the module will proceed to High Power Mode without host intervention. Figure 6 shows waveforms for maximum instantaneous, sustained and steady state currents for Low Power and High Power modes. Specification values for maximum instantaneous, sustained and steady state currents at each power class are given in Table 2.

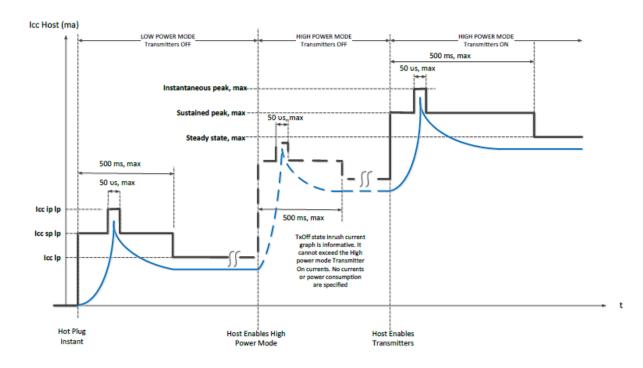
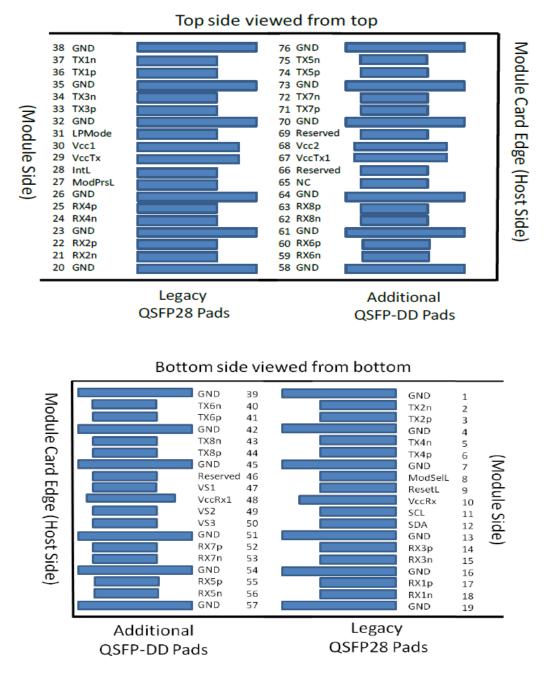



Figure 5 Instantaneous and Sustained Peak Currents for Icc Host

6 PIN ASSIGNMENT

Table 9 Pin Description

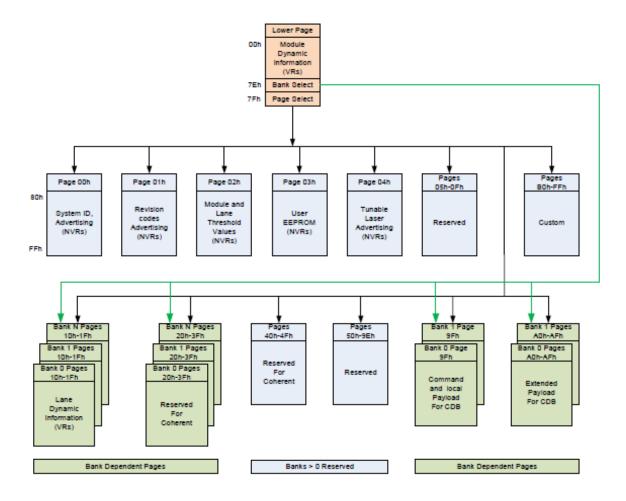
Pad	Logic	Symbol	Description	Plug Seq⁴	Notes	
1		GND	Ground	1B	1	
2	CML-I	Tx2n	Transmitter Inverted Data Input 3B			
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B		
4		GND	Ground	1B	1	
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B		
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B		
7		GND	Ground	1B	1	
8	LVTTL-I	ModSelL	Module Select.	3B		
9	LVTTL-I	ResetL	Module Reset.	3B		
10		VccRx	+3.3V Power Supply Receiver	2B	2	
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B		
12	LVCMOS-I/O	SDA	2-wire serial interface data 3B			
13		GND	Ground 1B		1	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output 3B			
15	CML-O	Rx3n	Receiver Inverted Data Output 3B			
16		GND	Ground 1B		1	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B		
18	CML-O	Rx1n	Receiver Inverted Data Output 3B			
19		GND	Ground	1B	1	
20		GND	Ground	1B 1		
21	CML-O	Rx2n	Receiver Inverted Data Output	3B		
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B		
23		GND	Ground	1B	1	
24	CML-O	Rx4n	Receiver Inverted Data Output	3B		
25	CML-O	Rx4p	Receiver Non-Inverted Data Output 3B			
26		GND	Ground	1B	1	
27	LVTTL-O	ModPrsL	lodule Present. 3B			
28	LVTTL-O	IntL	Interrupt.	3B		
29		VccTx	+3.3V Power supply transmitter	2B	2	
30		Vcc1	+3.3V Power supply	2B	2	

Pad	Logic	Symbol	Description	Plug Seq⁴	Notes
31	LVTTL-I	LPMode	Low Power Mode	3B	
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	No connect	3A	3
47		NC	No connect	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		NC	No connect	3A	
50		NC	No connect	3A	
51		GND	Ground 1A		1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground 1A		1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output 3A		
56	CML-O	Rx5n	Receiver Inverted Data Output 3A		
57		GND	Ground 1A		1
58		GND	Ground 1A		1
59	CML-O	Rx6n	Receiver Inverted Data Output 3A		
60	CML-O	Rx6p	Receiver Non-Inverted Data Output 3A		
61		GND	Ground	1A	1

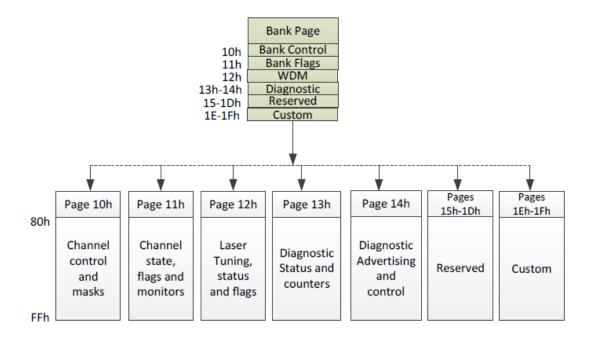
Pad	Logic	Symbol	Description	Plug Seq⁴	Notes
62	CML-O	Rx8n	Receiver Inverted Data Output	ЗA	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	No Connect	3A	3
67		VccTx1	3.3V Power Supply 2A		2
68		Vcc2	3.3V Power Supply 2A		2
69		Reserved	No Connect 3A		3
70		GND	Ground 1A		1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	ЗA	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	ЗA	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

[1] QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

[2] VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 7. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.

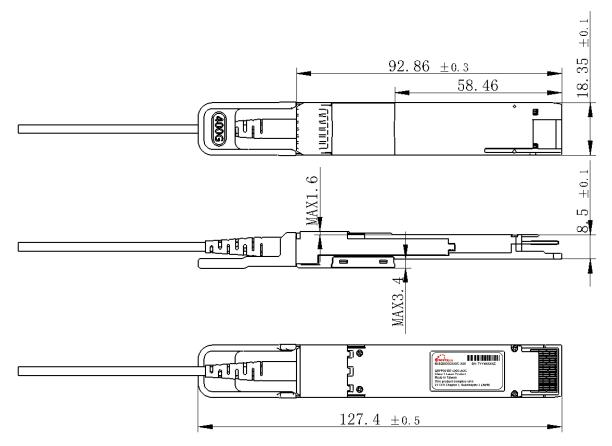

[3] All Vendor Specific, Reserved, No Connect and ePPS (if not used) pins may be terminated with 50 Ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF.

[4] Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A,1B will then occur simultaneously, followed by 2A,2B, followed by 3A,3B.



850nm Multi-mode AOC QSFP-DD form factor with Diagnostic Monitoring 400GBASE QSFP-DD AOC

7 DIGITAL DIAGNOSTIC MEMORY MAP


Table 10 Digital Diagnostic Monitor Accuracy

No.	Parameter	Symbol	Accuracy	Unit	Remarks	
1	Transceiver Case Temperature absolute	DMI_TEMP	±3	$^{\circ}\!\mathrm{C}$	Over operating temp	
	error					
2	Supply voltage monitor	DMI VCC	±3%	V	Full operating range	
	absolute error				1 3 3	
3	Channel Bias current	DMI IBIAS	±3%	mA	Per channel	
Ŭ	monitor	Biiii_1Bii (6	2070	110.0		
4	Channel RX power	DMI RX	±3	dB	Per channel	
4	monitor absolute error		ŦĴ	uв		
5	Channel TX power			dB	Per channel	
5	monitor absolute error	DMI_TX	±3			

MECHANICAL DIMENSIONS 8

Unit: mm

Pull tab color: Beige

Figure 7 Mechanical Dimensions

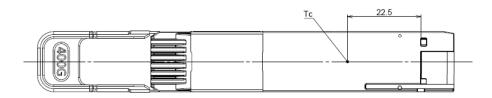


Figure 8 Case temperature measurement point

9 LABEL DESIGNS

27.7 mm x 15.7 mm

Notes:

Note 1	Serial Number	 YMDDLLXXXZ (ex. NC2501001A) Y: year of manufactured (ex. 9 = 2009, A = 2010,, N = 2023,) M: Month of manufactured (1~9 for Jan.~Sep., A for Oct., B for Nov., C for Dec.) DD: Day of manufactured LL: Last 2 codes of APAC manufacture order sequency number XXX: Running number (3 digits sequential number from 001 to 999) Z: A for one end of the AOC and B for another end of module.
Note 2	Manufacture Location	Made in Taiwan

Figure 9 Component Label

10 REGULATORY COMPLIANCE

Certification	Standard
EMC/EMI	FCC Part 15, Subpart B (Class B) EN55032 (Class B)
ESD	EN61000-4-2, criterion B JEDEC JESD22-A114-B Human Body Model
Laser Safety	21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3. described in Laser Notice No. 56, dated May 8, 2019.
Environmental	RoHS 10 (2011/65/EU + 2015/863) ISA S71.04 G2

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

11 REFERENCES

- 1. IEEE "802.3bs-2018"
- 2. QSFPDD MSA "QSFP-DD Hardware Specification for QSFP DOUBLE DENSITY 8X PLUGGABLE **TRANSCEIVE Rev. 5.1**"
- 3. QSFPDD MSA "QSFP-DD Management Interface Specification Rev 4.0"

12 ORDERING INFORMATION

Table 11 Product Code

	B 4B 1 2	QDD	8	CXX	X \downarrow $_{6}$		$- \frac{X_{13}X_{14}}{ _{8}}$	0	
Item	Parameter			Symbol					
1	Product Categ	lory		В					
2	Data rate	4B: 400G	4B: 400G						
3	Module Form Factor			QDD: QS	QDD: QSFP-DD				
4	Channel (TX)			8: 8CH					
5	Distance				C: AOC, XX: Length in meter (01: 1m, 03: 3m, 05: 5m, 07: 7m, 10: 10m, 20: 20m, 100:100m)				
6	Connector Type			X: AOC					
7	Operating Temperature Range			C: 0~70C	C: 0~70C				
8	Customer Code			XX: Stan	XX: Standard Product				
9	Revision			0					

13 REVISION HISTORY

Rev.	Date	Note		
1.0	2023/06/20	New released		
1.1	2024/04/08	hange label dimension		

For sales and support in your region, please go to sales@apacoe.com.tw